Fast finite-difference solution of biharmonic problems
نویسندگان
چکیده
منابع مشابه
Sinc Solution of Biharmonic Problems
In this paper we solve two biharmonic problems over a square, B = (−1, 1) × (−1, 1). (1) The problem ∇4U = f , for which we determine a particular solution, U , given f , via use of Sinc convolution; and (2) The boundary value problem ∇4V = 0 for which we determine V given V = g and normal derivative Vn = h on ∂B, the boundary of B. The solution to this problem is carried out based on the identity
متن کاملFinite Difference Solution of Mixed Boundary-value Elastic Problems
A new numerical method of solution has been developed for the analysis of deformation and stresses in elastic bodies subjected to mixed boundary-conditions. The program is capable of dealing with both regular and irregular shapes of boundaries appropriately. An ideal mathematical model, based on the displacement potential function, has been used in the finite difference solution. The present pa...
متن کاملA fast finite difference method for biharmonic equations on irregular domains
Biharmonic equations have many applications, especially in fluid and solid mechanics, but difficult to solve due to the fourth order derivatives in the differential equation. In this paper a fast second order accurate algorithm based on a finite difference discretization and a Cartesian grid is developed for two dimensional biharmonic equations on irregular domains with essential boundary condi...
متن کاملSignificant Error Propagation in the Finite Difference Solution of Non-Linear Magnetostatic Problems Utilizing Boundary Condition of the Third Kind
This paper poses two magnetostatic problems in cylindrical coordinates with different permeabilities for each region. In the first problem the boundary condition of the second kind is used while in the second one, the boundary condition of the third kind is utilized. These problems are solved using the finite element and finite difference methods. In second problem, the results of the finite di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications of the ACM
سال: 1972
ISSN: 0001-0782,1557-7317
DOI: 10.1145/355602.361313